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Abstract Cholesterol is a neutral lipid that accumulates in liquid-ordered, detergent-resistant membrane domains
called lipid rafts. Lipid rafts serve as membrane platforms for signal transduction mechanisms that mediate cell growth,
survival, and a variety of other processes relevant to cancer. A number of studies, going back many years, demonstrate that
cholesterol accumulates in solid tumors and that cholesterol homeostasis breaks down in the prostate with aging and with
the transition to the malignant state. This review summarizes the established links between cholesterol and prostate cancer
(PCa), with a focus on how accumulation of cholesterol within the lipid raft component of the plasma membrane may
stimulate signaling pathways that promote progression to hormone refractory disease. We propose that increases in
cholesterol in prostate tumor cell membranes, resulting from increases in circulating levels or from dysregulation of
endogenous synthesis, results in the coalescence of raft domains. This would have the effect of sequestering positive
regulators of oncogenic signaling within rafts, while maintaining negative regulators in the liquid-disordered membrane
fraction. This approach toward examining the function of lipid rafts in prostate cancer cells may provide insight into the
role of circulating cholesterol in malignant growth and on the potential relationship between diet and aggressive disease.
Large-scale characterization of proteins that localize to cholesterol-rich domains may help unveil signaling networks and
pathways that will lead to identification of new biomarkers for disease progression and potentially to novel targets for
therapeutic intervention. J. Cell. Biochem. 91: 54-69, 2004.  © 2003 Wiley-Liss, Inc.
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It has been known for about a century that
cholesterol and other fatty deposits accumulate
in solid tumors [White, 1909]. Increases in
cholesterol content of prostatic adenomas rela-
tive to normal tissue was reported by Swyer
60 years ago [Swyer, 1942]. Since then, many
studies of human subjects and animal models
have supported the existence of a relationship
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between cholesterol in prostate tissues or
secretions and benign and malignant prostate
growth. Despite this long history, there have
been few recent studies on the role of cholesterol
in prostate cancer (PCa). Consequently, the
physiological consequences, if any, of the accu-
mulation of fat, and specifically of cholesterol, in
relation to prostate carcinogenesis or progres-
sion are still poorly understood. This review will
summarize the basic research and clinical
observations that may relate to a functional
role for cholesterol in PCa. We also present a
testable model that attempts to unify many of
the published observations pertaining to cho-
lesterol and PCa progression. We propose that
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this model provides a new approach toward the
identification of novel molecular targets for PCa
therapy.

PROSTATE CANCER INCIDENCE
AND CHOLESTEROL

A variety of studies, beginning in the early
1980s, have linked increased risk of aggressive
PCa to the consumption of animal products and/
or fatty food. This association is still tentative,
however, and the specific dietary components
that may underlie such risks remain unknown.
Nevertheless, it has been suspected for many
years that life-style factors play a significant
role in the rates of appearance and in the
aggressiveness of clinically relevant PCa. Immi-
grants to the US and other Western nations
from Asian countries, where the incidence of
clinical PCa is typically low, show a dramatic
increase in PCa detected clinically [Cook et al.,
1999]. This increase in cancer incidence has
been related to time of arrival, with increased
cancer risk associated with early arrival in
comparison to individuals who migrated later in
life [Shimizu et al., 1991]. Because autopsy
studies have shown that the incidence of occult
PCa is similar in Asian and Western societies
[Yatani et al., 1988; Pienta, 1994], the studies
on immigrants point to an important role for
exogenous factors, most probably diet, in PCa
progression. Consistent with this, PCa inci-
dence rates have recently risen in Asian count-
ries that have been undergoing Westernization
[Weisburger, 1997; Yanget al., 1999a]. Michaud
et al.[2001] have reviewed the literature on diet
and PCa incidence and have reported that,
while association of PCa risk with the consump-
tion of meat products has been relatively
consistent (15 out of 19 studies reporting an
association), studies examining fat intake have
been less consistent. In a recent review [Kolonel
etal., 1999], it was concluded that, while dietary
fat may be related to PCa risk, “the specific fat
components that are responsible are not yet
clear.”

As of this writing, the Michaud et al. pro-
spective study is the most comprehensive
analysis of the relationship between consump-
tion of animal products and PCa risk. It involved
47,780 subjects in the Health Professionals
Follow-up Study and demonstrated an elevated
risk specifically of metastatic PCa and con-
sumption of red meat and dairy products. In
that analysis, there was no demonstrable asso-

ciation between animal products in the diet and
total PCa, suggesting that the association is
specifically with progression to metastatic dis-
ease. These investigators concluded that nutri-
ents such as calcium and fatty acids explain
much of the association between dairy products
and metastatic PCa risk, but that the associa-
tion with meat products cannot be explained by
intakes of calcium, saturated fat, or a-linoleic
fatty acids.

Cholesterol, a neutral lipid that plays an
essential role in the maintenance of the integ-
rity of biological membranes, is a prominent
component of a diet containing animal products.
In addition to its role in membrane structure,
cholesterol also serves as a precursor in
the synthesis of bile acids and many endocrine
signaling mediators, such as the steroid hor-
mones. Cholesterol is synthesized in mamma-
lian cells via the mevalonate pathway (Fig. 1),
which also produces a number of other impor-
tant biochemical end-products. Isoprene units,
produced by the mevalonate pathway, are
precursors in the synthesis of a variety of
molecules, including proteins, which are mod-
ified post-translationally. Isoprenoid modifica-
tion of signaling proteins, such as Ras and Rho
family members, are essential for proper mem-
brane targeting of these molecules. Isopreny-
lated proteins participate in signal transduction
pathways that regulate diverse processes such
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Fig. 1. The mevalonate pathway.
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as the cell cycle, cell survival mechanisms and
cell motility. Mevalonate products are thus
essential for a wide-range of biological activi-
ties, from hormonal regulation of endocrine
target organs to electron transport. The com-
plexity and diversity of products originating
from the mevalonate pathway have confounded
studies focused on potential relationships
between circulating cholesterol levels, choles-
terol intake by diet or pharmacologic manage-
ment of circulating cholesterol in cancer
incidence or progression.

Most epidemiological studies have not found
an association between circulating cholesterol
levels, whether or not linked to diet, and cancer
risk [Wu et al., 1994; Veierod et al., 1997; Chen
et al., 2002; Smith-Warner et al., 2002]. This is
consistent with the current state of the litera-
ture in which links to intake of fat and cancer
incidence at most organ sites are modest.
However, there are exceptions to this general
rule. Several studies have reported statistically
significant correlations between cholesterol
intake and cancer risk [De Stefani et al., 1997;
Horn-Ross et al., 1997; Jarvinen et al., 2001].
These findings are consistent with the possi-
bility that prolonged consumption of choles-
terol-rich foods might promote progression of
certain cancer types or cancer growth in select
tissues.

Some studies have reported an inverse asso-
ciation between cancer incidence and choles-
terol levels for certain neoplasms [Kaplan et al.,
1997]. Evidence suggests that this negative
relationship is likely attributable in many cases
to hypocholesteremic effects of pre-existing
cancer [Knekt et al., 1988; Wald et al., 1989].
Although the question of the effect of unde-
tected, pre-existing cancer on circulating cho-
lesterol can be debated [Vatten and Foss,
1990], it is clear that frank cancer is indeed
associated with lower circulating cholesterol
levels in human patients [Umeki, 1993; Eich-
holzer et al., 2000; Fiorenza et al., 2000]. This
negative association provoked long-term stud-
ies designed to identify potential health risks to
patients on cholesterol-lowering therapy for
cardiovascular disease. The results of several
such studies indicate that chronically lowered
cholesterol does not increase cancer risk
[Waters, 2001; Heart protection study colla-
borative group, 2002] and may, in fact, lower
cancer incidence at many organ sites [Blais
et al., 2000; Pedersen et al., 2000].

HMG-CoA REDUCTASE INHIBITORS
AND CANCER

The above discussion makes it clear that
attempts to use epidemiological tools to assess
any potential association between dietary or
circulating cholesterol and risk of clinical PCa
are confronted with significant challenges.
Several older studies that attempted to estab-
lish a link between serum cholesterol levels and
PCa risk did not report an association [Hiatt
and Fireman, 1986; Knekt et al., 1988; Smith
etal., 1992]. Another approach is to ask whether
long-term treatment with cholesterol-lowering
drugs affects PCa detection rates, incidence of
aggressive disease, or disease-specific survival.
These questions are only now beginning to be
addressed.

3-Hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA) reductase inhibitors, more com-
monly known as “statins,” are cholesterol-low-
ering drugs that have been widely used for
many years to reduce the incidence of adverse
cardiovascular events. HMG-CoA reductase
catalyzes the rate-limiting step in the mevalo-
nate pathway (Fig. 1) and these agents lower
cholesterol by inhibiting its synthesis in the
liver and in peripheral tissues [Koga et al.,
1990]. HMG-CoA reductase inhibitors function
at an early step in the synthesis of cholesterol;
as a consequence, the levels of cholesterol,
and its upstream precursor isoprenoids, gera-
nylgeranylpyrophosphate and farnesylpyro-
phosphate, are reduced. Thus, essential cell
components that require isoprenoids, e.g., doli-
chols and ubiquinone (a polyisoprenylated
quinoid cofactor of the electron transport chain),
are affected by HMG-CoA reductase inhibitors.
Statin drugs (e.g., pravastatin, lovastatin, sim-
vastatin) now have a sufficiently long clinical
history so that safety concerns for many of them
can be definitively evaluated. Toxicity during
long-term therapy with most statins is minor
and recent studies have reported significant
general health benefits with prolonged statin
therapy [Pedersen et al., 2000; Waters, 2001].

A prospective analysis of the effect of long-
term HMG-CoA-reductase inhibitor therapy
on PCa incidence or progression rates using
modern methods of study design has not yet
appeared in the peer-reviewed literature. How-
ever,theresultsofalarge-scale studyevaluating
the effect of long-term statin therapy specifically
on cancer incidence rates was reported at the
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annual meeting of the American Society for
Clinical Oncology in 2003 [Graaf et al., 2003].
That study, the report of which has to date only
appeared in abstract form, was conducted by
researchers from the Academic Medical Center
at the University of Amsterdam. The study
examined 20,000 patients, comparing those
taking statins with those taking other cardio-
vascular protective drugs within the period
1983-1998. These investigators found a 20%
reduction in total cancer incidence (adjusted
odds ratio=0.80; 95% CI=0.66—0.96) in the
statin cohort with the largest reductions in the
incidence of prostate and kidney cancer. Graaf
et al. found statins to be protective when used
longer than 4 years (adjusted OR 0.64; 95% CI.:
0.44-0.93) or when more than 1350 Defined
Daily Doses were taken (adjusted OR 0.60; 95%
CI: 0.40-0.91). Interestingly, patients that
terminated statin therapy returned to abaseline
level of risk within 6 months. At this writing, the
evaluation of these data awaits peer review;
however, if verified, this finding suggests the
possibility that inhibiting HMG-CoA-reductase
may have clinical benefit in the chemopreven-
tion of PCa.

Pedersen et al. [2000] conducted a randomiz-
ed, placebo-controlled study of cause-specific
mortality rates in patients on long-term (up to
8 years) simvastatin therapy. These investiga-
tors reported fewer deaths from cancer in the
simvastatin group in comparison to the placebo
group, although the difference was not consid-
ered significant. In a recent nested case—control
study addressing potential risks of HMG-CoA-
reductase inhibitor therapy with respect to
potential increases in cancer incidence, nearly
all cancer sites examined were either not associ-
ated, or were inversely associated, with statin
therapy [Blais et al., 2000]. Interestingly, in this
study PCa incidence declined in the HMG-CoA-
reductase inhibitor group (adjusted rate
ratio=0.74; CI=0.36—1.51) in comparison to
the referent group (patients taking bile acid-
binding resins). Anti-cancer efficacy of statins
in comparison to other methods of cholesterol
lowering may arise from the fact that these
agents not only lower serum cholesterol but, in
addition, reduce cholesterol synthesis in per-
ipheral tissues as well as in the liver. This may
be of considerable benefit in the case of prostatic
neoplasms because the prostate has been
reported to synthesize cholesterol at a rate even
higher than the liver [Schaffner, 1981].

HMG-CoA-reductase inhibitors have been
demonstrated to exert potent anti-cancer effects
in model systems. A recent review has summari-
zed the relevant publications on this topic [Chan
et al., 2003]. Studies with cell culture models
indicate that statin drugs can inhibit cancer cell
growth and motility [Jani et al., 1993; Farina
etal., 2002], induce apoptosis [Wonget al., 2001;
van de Donk et al., 2002] and inhibit endothelial
cell migration and tube formation, properties
associated with angiogenesis [Vincent et al.,
2001; Park et al., 2002]. Mevastatin, for exam-
ple, has been shown to inhibit cell cycle prog-
ression in PC-3 human PCa cells by inhibiting
cyclin dependent kinase (cdk2) phosphorylation
[Ukomadu and Dutta, 2003]. Animal studies
have verified that this class of agents has a
substantial capability to retard tumor growth
[Narisawa et al., 1994; Alonso et al., 1998],
in vivo angiogenesis [Park et al., 2002] and
tumor metastasis [Janiet al., 1993; Alonso et al.,
1998; Farina et al., 2002]. In general, the statins
also exhibit a robust selectivity for tumor cells
over normal cells [Wong et al., 2001], an essen-
tial attribute for successful cancer therapy.
Their ability to enhance the efficacy of conven-
tional chemotherapeutic agents has also been
demonstrated [Lishner et al., 2001; Wachter-
shauser et al., 2001]. Because most of the statins
are now known to be well-tolerated by patients,
and because they affect many processes govern-
ing the behavior of malignant cells (via multiple
downstream effects on the mevalonate path-
way), continued evaluation of these compounds
in clinical trials as potential chemopreventive
agents or as adjuvants to standard therapy is
warranted. However, general conclusions about
the anti-cancer effectiveness of the statinsis not
advised because the different compounds can
exhibit significantly different activity profiles
against tumor cells [Wong et al., 2001]. This dif-
ference in potency between various statins may
account for reports claiming no effect of statin
use on cancer incidence [Coogan et al., 2002].

CHOLESTEROL CONTENT OF PROSTATE
CANCER CELLS AND TUMORS

Cells in the prostate, as is the case with other
tissues, synthesize cholesterol endogenously via
the mevalonate pathway. However, much of the
cholesterol residing in cell membranes origi-
nates from the uptake of circulating lipopro-
teins [Simons and Ikonen, 2000]. Consequently,
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cellular cholesterol content is a balance between
metabolic mechanisms intrinsic to the cell and
the regulatory functions of cholesterol distribu-
tion in the organism. Cholesterol content of
cell membranes is under tight homeostatic
regulation and involves synthetic pathways in
the endoplasmic reticulum, transfer of choles-
terol from lipoproteins to the exoplasmic lea-
flet, receptor-mediated internalization, several
intracellular transport mechanisms, and exten-
sive efflux from the cell via secretion of lipopro-
tein complexes. Extensive evidence indicates
that this complex homeostatic mechanism
breaks down in cancer and also in the aging
prostate.

Swyer, using a histologic test, was the first to
report that the cholesterol content of BPH
tissues was higher (approximately double) than
that of normal prostatic tissues [Swyer, 1942].
He also noted a spatial relationship between
presumptive cholesterol accumulation and cel-
lular hyperplasia, a finding similar to that re-
ported by White in the early 20th century in an
analysis of non-prostatic tumors [White, 1909].
Subsequent studies of human and animal pro-
state tissues also reported increases in choles-
terol content in the prostate and in prostatic
secretions correlating with disease, age, or the
presence of malignancy [Schaffner, 1981].
These older observations are in agreement with
recent studies of the relative cholesterol content
of human breast cancers as evaluated by Raman
spectroscopy (M. Feld, A. Haka, personal com-
munication). Cholesterol accumulation may be
a more general property of cancer and has been
reported in a variety of tumor types [Dessi et al.,
1992, 1994; Rudling and Collins, 1996; Yoshioka
et al., 2000; Kolanjiappan et al., 2003]. Cancer-
associated increases in tissue cholesterol con-
tent have also been reported to affect normal
tissues surrounding malignant tumors [Nygren
et al., 1997]. Cholesterol increases in tumor
tissues likely occur by multiple mechanisms,
including increased absorption from the circu-
lation [Graziani et al., 2002; Tatidis et al., 2002],
loss of feedback regulation through down-
regulation of low density lipoprotein (LDL)
receptors [Caruso et al., 1999] and up-regula-
tion of components of the mevalonate pathway,
particularly HMG-CoA reductase [Caruso
et al., 1999; Caruso et al., 2002]. Androgen also
stimulates lipogenesis in human PCa cells
directly by increasing transcription of the fatty
acid synthase and HMG-CoA-reductase genes

[Heemers et al., 2001]. Other components of the
mevalonate pathway, such as farnesyl dipho-
sphate synthase, are also regulated by andro-
gen and may play a role in accumulation of
cholesterol and other lipid products in the
prostate [Jianget al., 2001]. Because cholesterol
uptake and synthesis are coupled to the cell
cycle [Wadsack et al., 2003], the link between
cholesterol, other lipogenic mechanisms and
androgen action suggests the possibility that
lipid products of these pathways are involved in
androgenic stimulation of PCa cell growth.

The first evidence that lowering cholesterol
levels systemically might have the capability to
alter prostate cell growth and/or survival was
first presented by Schaffner and colleagues in a
series of innovative studies. These investigators
demonstrated that prostate regression could
be selectively induced in dogs and rodents by
oral application of hypocholesteremic agents,
such as the polyene macrolide candicidin
[Gordon and Schaffner, 1968; Schaffner and
Gordon, 1968; Fisher et al., 1975; Schaffner,
1981]. Candicidin and structurally similar
agents, such as amphoteracin B, exert biological
effects by binding to cholesterol and closely
related sterols [Charbonneau et al., 2001]. Oral
administration of candicidin and similar agents
likely lowers circulating cholesterol by inhibit-
ing its absorption from the gut [Schaffner and
Gordon, 1968]. Several human trials of oral
candicidin for BPH in the 1970s reported symp-
tomatic improvement [Keshin, 1973; Orkin,
1974, Sporer et al., 1975], with no alteration in
hormonal status [Orkin, 1974], indicating that
changes in the prostate, which included regres-
sive histomorphologic changes within the gland
[Keshin, 1973], were likely not the result of
suppression of androgen production or utilizat-
ion. Collectively, these studies suggest the intri-
guing possibility of manipulating prostate cell
growth or homeostasis in situ by lowering circul-
ating cholesterol levels pharmacologically.

CHOLESTEROL AND LIPID RAFTS

In the plasma membrane and other intra-
cellular membranes, cholesterol accumulates
in specialized structures known by various
names, such as lipid rafts, detergent-resistant
membrane domains (DRMs), and detergent-in-
soluble, glycolipid-enriched complexes (DIGs).
Evidence for the existence of such cholesterol-
rich membrane domains was first developed
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from studies of glycosylphosphatidylinositol
(GPI)-anchored proteins on lymphocytes and
brush border membranes of the kidney and gut
[Gunter et al., 1984; Hooper and Turner, 1987,
1988a,b]. These early studies described GPI-
anchored proteins as being lipid-anchored and
‘detergent-insoluble’, yet capable of delivering
cell signals when cross-linked. These findings
were, however, paradoxical: how could proteins
incapable of spanning the lipid bilayer trans-
duce signals? This dilemma began to clarify
when it was subsequently demonstrated that
GPI-anchored proteins co-immunoprecipit-
ated with both Src family tyrosine kinases
[Stefanova et al., 1991; Shenoy-Scaria et al.,
1992; Thomas and Samelson, 1992] and hetero-
trimeric G proteins [Solomon et al., 1996].
However, these observations led to a second
paradox: how do proteins that do not span the
bilayer interact with inner-leaflet signaling
molecules? In the last decade this latter paradox
has been largely resolved with the recognition
that detergent-insoluble membrane domains
serve as important nodes for signal transduc-
tion and other essential processes, such as
cholesterol transport.

Studies into the composition of biological
membranes that are resistant to solubilization
in cold non-ionic detergents, such as Triton X-
100 and Nonidet P-40, but which are not asso-
ciated with the insoluble cytoskeleton, resulted
in the discovery that discrete membrane sub-
fractions contain high concentrations of choles-
terol and fatty acids with long saturated acyl
chains. Based on the apical vs. basolateral
sorting properties of these domains, Simons
and colleagues began to refer to these regions as
‘patches,” and later as ‘lipid rafts’ [Simons and
van Meer, 1988; Simons and Wandinger-Ness,
1990]. These and subsequent studies estab-
lished that biological and artificial membranes
that contain high concentrations of cholesterol
and saturated fatty acid chains will sponta-
neously form “liquid ordered” aggregates, a
heretofore theoretical condition that had been
hypothesized to exist between the common
liquid disordered state and the non-biological
gel state [Pike, 2003]. In biological membranes,
lipid rafts are enriched in sphingolipids (e.g.,
sphingomyelin and glycosphingolipids) relative
to the majority of the membrane. Rafts are
formed by self-aggregation of these lipids dur-
ing their transport from the ¢rans-Golgi net-
work to the cell surface. These membrane

patches are rich in proteins but likely represent
only 10—15% of the plasma membrane area.

At least two morphologically distinguishable
varieties of lipid raft exist on cell surfaces.
The more familiar type has been named caveo-
lae (“little caves”) and are identifiable in
electron micrographs as striated 50—100 nm
invaginations in the plasma membrane [van
Deurs et al., 2003]. Caveolae also exist as intra-
cellular vesicles. Their invaginated and vesicu-
lar architecture is conferred by members of the
caveolin protein family [Rothberg et al., 1992].
Caveolins, structural proteins that bind choles-
terol, are necessary for caveolae formation but,
because the biological function(s) of caveolae are
still not well understood, their wider function is
unclear. All three members of the mammalian
caveolin family (caveolin-1, -2, and -3) have been
knocked out in the mouse and, surprisingly, the
functional deficits in these animals are rela-
tively minor, given that loss of caveolin expres-
sion results in the complete ablation of an
intracellular organelle [Galbiati et al., 2001a;
Razani et al., 2001]. The second variety of raft
has been named the flat raft or G domain. Flat
rafts do not contain caveolin proteins and thus
do not form a recognizable membrane structure
identifiable by electron microscopy. Both type of
lipid raft are isolated biochemically using simi-
lar approaches and have been shown to contain
GPI-anchored proteins, Src family kinases,
heterotrimeric G protein subunits, and other
cell signaling molecules, such as receptor tyro-
sine kinases (RTKs) [Li et al., 1996; Solomon
et al., 1996; Liu et al., 1997b; Rietveld et al.,
1999]. Raft composition is likely to be dependent
on cell type, although large-scale characteriza-
tion of raft-resident proteins using proteomics
approaches is just beginning [Bini et al., 2003;
Foster et al., 2003]. Caveolae, which are present
in adipocytes, myocytes, osteoblasts, endothe-
lials as well as other cell types, are the most
studied form of lipid raft to date.

Although the mechanisms of protein loca-
lization to rafts are still poorly understood,
many involve post-translational modifications.
Targeting mechanisms to rafts include the
presence of a GPI-anchor, dual acylation (Src
kinases and heterotrimeric G protein subunits)
[Moffett et al., 2000] and linkage to cholesterol
(Hedgehog) [Rietveld et al., 1999]. In contrast,
prenylated proteins (e.g., Rapl, Rab5) may be
excluded from rafts [Rietveld et al., 1999;
Zacharias et al., 2002]. Other signaling mole-
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cules identified in rafts in certain cell types
include the endothelin receptor, thrombin
receptors, multiple growth factor receptors, ion
channels and pumps, an inositol 1,4,5-trispho-
sphate receptor, phosphoinositide-3-kinase
(PI3K), and protein kinase C (PKC) isoforms
[Chun et al., 1994; Schnitzer et al., 1995; Couet
et al., 1997; Liu et al., 1997a,b; Bi et al., 2001].

Lipid rafts appear to serve a number of
functions, such as intracellular transport and
sorting of molecules, receptor down-regulation
and recycling, and targeted export of proteins
and lipids. In this review, which deals with the
potential link between cholesterol and PCa, we
will emphasize the role that lipid rafts are likely
to play as essential platforms for signal trans-
duction.

In cell signaling, rafts appear to act as a
means of assembling components of specific
pathways in ways that provide a regulatory
architecture for transmission of signal. Rafts
are believed to accomplish this by co-localizing
cognate proteins so as to facilitate interactions
and by excluding proteins capable of degrading
signal, such as protein or lipid phosphatases.
These functional properties of lipid rafts result
in their ability to organize downstream signal-
ing components in close proximity to surface
receptors. They also create local environments
in which signal propagation, amplification and
cross-talk between pathways can occur. Some of
the mechanisms by which lipid rafts may
conceivably regulate signal transduction events
are diagrammed in Figure 2 and include protein
sequestration, assembly of pre-formed signal-
ing complexes and intracellular and intramem-
brane trafficking and sorting. Proteins that
have been implicated in signaling through lipid
rafts include the T-cell receptor [Horejsi, 2003],
the B-cell receptor [Saeki et al., 2003], integrins
[Wary et al., 1998], ephrins [Bruckner et al.,
1999], and the EGF receptor [Couet et al., 1997,
Zhuang et al., 2002].

LIPID RAFTS AND PROSTATE CANCER

The first evidence linking lipid rafts to PCa
was published by Thompson and colleagues,
who identified caveolin-1 as a marker for
aggressive PCa [Yang et al., 1998, 1999b; Tahir
et al.,, 2001]. Subsequent studies from this
group indicated that caveolin-1 is a predictor
of poor outcome following surgery in lymph
node-negative PCa patients [Satoh et al., 2003].

This literature has recently been reviewed
[Mouraviev et al., 2002]. The relevance of these
observations to our topic lies in the realization
that caveolins localize essentially exclusively to
lipid raft microdomains and are, in fact, the
structural basis for the invaginated appearance
of the caveolar form of raft. Consequently, a
prominent marker of disease progression in
PCa is also a marker for a cholesterol-rich
membrane compartment. In addition, because
caveolins may be involved in cholesterol trans-
port to the cell membrane [Simons and Ikonen,
2000], higher caveolin levels may coincide with
higher membrane cholesterol.

The link to caveolin-1 implicates the lipid
raft microdomain as a potential site for signal
transduction events relevant to PCa progres-
sion. The possibility that this association is
functional, as opposed to simply correlative, is
supported by the demonstration that anti-
caveolin-1 antibodies suppressed PCa metasta-
sis in mice, suggesting that caveolin-1 may play
a direct role in metastatic dissemination [Tahir
et al., 2001]. Caveolin-1 has also been shown to
interact directly with the androgen receptor
(AR) and appears to be capable of participating
in the mediation of androgen-dependent signals
in PCa cells [Lu et al., 2001]. Recent reports
have demonstrated that members of the steroid
hormone superfamily, including the androgen
receptor [Sun et al., 2003], can function by a
mechanism that is independent of their tradi-
tional role as transcriptional regulators (so-
called “non-genomic” functions for these mole-
cules), and that they can localize to rafts. These
findings suggest the possibility that lipid rafts
may regulate PCa cell growth and survival
functions by compartmentalizing signaling pro-
teins involved in hormonally responsive or
dependent pathways, e.g., steroid hormone
receptors. Although this possibility has only
begun to be explored, recently published papers
suggest this is going to be an extremely fruitful
area of inquiry in studies of signal transduction
by steroid hormones [Boonyaratanakornkit
et al., 2001; Lu et al., 2001; Chambliss et al.,
2002; Sun et al., 2003].

Because raft domains are known to be
involved in cell signaling in caveolin-negative
cells [Magee et al., 2002; Horejsi, 2003; Saeki
et al., 2003], signal transduction through rafts
in cancer may be caveolin-independent. Down-
regulation of caveolins is a common character-
istic of malignant cells [Wiechen et al., 2001];
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consequently, despite the apparent connection
between caveolin-1 and PCa progression, it is
important to realize that, in cancer cells, rafts
might not require caveolins for the performance
of signaling functions relevant to tumor pro-
gression. Thereaderis directed to several recent
reviews for in-depth discussions of raft-depen-
dent signal transduction mechanisms [Simons
and Toomre, 2000; Galbiati et al., 2001b; Magee
et al., 2002; Zajchowski and Robbins, 2002]. Our
own view is that in cancer cells, caveolar and
non-caveolar rafts may be equally important
in sequestering signaling molecules and/or for
signal processing necessary for cancer cell
growth and survival in the face of apoptotic
triggers present in the tumor environment.
Addition of exogenous LDL to cultures of PC-3
human PCa cells has been reported to stimulate
cell growth [Hughes-Fulford et al., 2001]. At
least one older study reported that addition of
LDL to cultured cells was sufficient to “trans-
form” them, using in vitro criteria [Zwijsen,
1992]. These results are intriguing when one
considers the aforementioned literature demon-
strating that solid tumors can accumulate cho-
lesterol. How might we interpret these findings
in the context of lipid raft-mediated signaling?
Cholesterol has been demonstrated in a large
number of studies to be a lipid raft component
that is essential for the functional integrity of
caveolar and non-caveolar rafts. This literature
persuasively illustrates that raft-dependent
signaling events can be inhibited by dispersing
cholesterol or removing it from the membrane
with cholesterol-binding compounds [Liu et al.,
1997a; Pike and Miller, 1998; Peiro et al., 2000;
Parpal et al.,, 2001]. On the other hand, ex-
periments with artificial membranes have
demonstrated that liquid-ordered, sphingomye-
lin-enriched lipid microdomains can exist in
the absence of cholesterol [Milhiet et al., 2002].
These cholesterol-poor rafts can actually be
disrupted by cholesterol addition [Milhiet et al.,
2002]. Collectively, this information suggests
that lipid microdomains in living cells might be
heterogeneous in structure and function and
might respond in a variety of ways to changes
in steady-state cholesterol levels in the mem-
brane. Thus, from first principles one can
conclude that the accumulation of cholesterol
that can occur in tumors, in concert with
other tumor-associated alterations in normal
mechanisms of cholesterol homeostasis, is likely
to alter raft-dependent signaling in tumor cells.

But which signal transduction mechanisms
might be altered by changes in cholesterol
metabolism in tumors and how might they be
affected by these changes?

The possibility that some signaling mechan-
isms relevant to PCa cancer progression may be
dependent on cholesterol present in the plasma
membrane is currently under study in our labor-
atories. Zhuang et al. [2002] recently demon-
strated that LNCaP androgen-responsive
human PCa cells can be stimulated to undergo
apoptosis in response to treatment with filipin, a
polyene macrolide that binds cholesterol and
disperses it in the plane of the membrane. That
study showed that signaling through the Akt
serine—threonine kinase is partly dependent on
theintegrity of plasma membrane rafts and that
the effects of filipin on Akt signaling and
apoptosis can be attenuated by repletion of the
membrane with cholesterol. Akt is an important
node for cell survival and growth signals in
PCa and in other solid tumors [Paez and
Sellers, 2003]. Akt is also believed to be
physiologically relevant to clinical PCa because
PTEN, a lipid phosphatase that is an important
negative regulator of this pathway, is inacti-
vated in a significant fraction of aggressive PCa
[McMenamin et al., 1999]. In another study that
we have recently submitted for publication,
Zhuang, Kim and colleagues go on to show that
this dependence on lipid rafts for ligand-acti-
vated signaling through Akt extends even to
normal prostate epithelial cells (PrEC). Unlike
the situation in LNCaP cells, cholesterol-bind-
ing agents did not stimulate apoptosis in PrEC,
indicating that the cancer cells may have be-
come dependent on a cholesterol-mediated cell
survival pathway. Interestingly, the Zhuang,
Kim et al. study (unpublished results) also
showed that simvastatin, which has been
demonstrated previously to stimulate apoptosis
in cancer cells, also inhibits Akt signaling in
LNCaP cells. Furthermore, the cholesterol
content of lipid rafts in these cells was shown
to be dramatically decreased with simvastatin
treatment. This result indicates that it may be
possible to target raft-dependent cell survival
mechanisms in PCa cells by pharmacologic
intervention using FDA-approved drugs that
have been demonstrated in clinical trials to be
well tolerated with long-term therapy. The
finding that cholesterol-binding polyene macro-
lides can be potent stimulators of cancer cell
death and that, in contrast, normal cells are
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relatively resistant to this treatment, was actu-
ally demonstrated and reported over 25 years
ago [Fisher et al., 1975]. This was before the
phenomenon of apoptosis as we know it today
was established as a cellular process, although
these older data are consistent with our own
studies of cholesterol-dependent survival
mechanisms in prostatic cells.

Several other groups have recently reported
findings in other cell systems consistent with a
role for rafts in signal transduction through
Akt [Bauer et al.,, 2003; Podar et al., 2003].
Interestingly, the Hemmings laboratory has
identified an enzymatic activity capable of
phosphorylating Akt on Ser-473 as a protein
that resides in the lipid raft subcellular com-
partment [Hill et al., 2002]. The findings
reported in that study are significant because,
although it is known that translocation to
the plasma membrane from the cytosol is a
feature of Akt phosphorylation by upstream
activators, there is still considerable contro-
versy about the mechanism by which Akt
becomes phosphorylated on its two principal
regulatory sites (Thr-308 and Ser-473) [Scheid
and Woodgett, 2003]. The presence of an Akt
kinase in the raft compartment suggests that
cells may employ raft microdomains as a means
to rapidly mobilize or, alternatively, repress the
enzymatic or binding functions of the molecule.

In a third study from our laboratories, Kim
and colleagues demonstrated that signaling to
the transcription factor, STAT3, by IL-6 also
involves lipid rafts in LNCaP cells [Kim et al.,
2003]. Increases in circulating IL-6 are associ-
ated with PCa progression [Nakashima et al.,
2000], and IL-6 has been shown in cell culture
models to be an inducer of neuroendocrine
characteristics in PCa cells [Deeble et al., 2001].
Neuroendocrine properties in prostate and
other solid tumors, and in animal models of
PCa, have been associated with more aggressive
disease [Abrahamsson, 1999]. Steady-state in-
creases in STAT3 activation are also associated
with advanced PCa [Mora et al., 2002]. In our
study by Kim et al., IL-6 induced phosphoryl-
ation of STATS3, its translocation from the
cytoplasm to the nucleus, as well as promoter
activity of the neuroendocrine marker, neuron
specific enolase (NSE) and accumulation of NSE
protein, were partly dependent on intact plasma
membrane rafts. Phosphorylated STATS3 also
predominantly localized to the raft compart-
ment after stimulation of the cells with IL-6.

Consequently, these findings represent another
demonstration of a cholesterol-dependent signal
transduction mechanism underlying a process
that is potentially relevant to disease progres-
sion in humans. Interestingly, neuroendocrine
differentiation in PCa cells most likely occurs
independently of androgenic signaling [Adam
et al., 2002], suggesting the possibility that raft-
dependent signals may operate promiscuously
(i.e., without the influence of androgen) in hor-
mone-refractory disease and in the androgen-
depleted state. This hypothesis is potentially all
the more relevant because of the demonstration
in animals [Cinci et al., 1993] and humans
[Moorjani et al., 1988] that androgen suppres-
sion can induce hypercholesterolemia.

A MODEL INTEGRATING THE PHENOMENON
OF INCREASED MEMBRANE CHOLESTEROL IN
TUMOR CELLS WITH LIPID RAFT SIGNALING

Inspection of Figure 2 makes it abundantly
clear that both caveolar and non-caveolar rafts
might alter signal transduction processes in
cancer cells in a multitude of ways. Is there a
simpler model that would allow testing of the
hypothesis that elevation of cholesterol content
in tumor cell membranes promotes disease
progression? If so, how might this model be
applied toward the identification of new targets
for disease therapy? In imagining such a model,
it is useful to understand how the concept of the
lipid microdomain explains the phenomenon of
signal transmission by GPI-anchored proteins.
It is now well established that GPI-anchored
proteins reside in lipid rafts along with an array
of other signal transducing molecules. Although
in isolation individual GPI-anchored proteins
do not appear capable of generating signals,
when cross-linked by antibodies they are able to
generate many different types of signals,
including Ca®" mobilization, inositol phosphate
production, as well as a range of cellular re-
sponses such as proliferation, growth factor
production and apoptosis. It is reasonable to
speculate that what is occurring when the GPI-
anchored proteins are cross-linked is that as the
proteins are being pulled together, their asso-
ciated raft domains are also being brought
together as well. Thus, the small, isolated rafts
coalesce to form substantially larger rafts
(think: island). This concept is illustrated in
Figure 3. Isolated rafts are likely to be relatively
small, with limited compositional complexity.
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Fig. 3. A model for how increases in membrane cholesterol
might alter signal transduction in cancer cells. Cross-linking of
GPl-anchored proteins may induce the coalescence of lipid rafts,
thereby activating signaling mechanisms. Similarly, increases in
membrane cholesterol beyond some critical concentration may

Asdiscussed above, although a variety of signal-
ing molecules are found in rafts, it is probable
that not all rafts are compositionally equiva-
lent. Consequently, the process of raft cross-
linking would not only create large rafts, but
would probably increase raft complexity by
assembling rafts with varying protein composi-
tion. In addition, because large, coalesced rafts
maintain the same surface area as the sum of
all the isolated rafts, but have a dramatically
decreased circumferential length, fewer raft
proteins will be present at the raft/non-raft
(liquid-disordered) interface. Therefore, fewer
raft proteins would be available to be regulated
by moieties that are excluded from rafts but
which may be abundant in the membrane-at-
large. Solomon and co-workers have hypothe-
sized for almost a decade that coalescence of
rafts is the underlying mechanism for signaling

coalesce rafts, thereby sequestering oncogenic signaling mole-
cules within rafts, increasing compositional complexity of
individual rafts, and excluding negative regulators from the raft
compartment.

induced by antibody cross-linking of GPI-
anchored proteins [Solomon, 1996].

How does the cross-linking hypothesis apply
to the observation that increases in cholesterol
in tumor cell membranes, either from dietary or
other factors, may promote PCa growth and dis-
ease progression? We know from experiments
with model membranesthat moderate increases
in the level of membrane cholesterol (10—20%)
reduces the number of isolated rafts and causes
the formation of larger rafts [Lawrence et al.,
2003]. Consequently, the literature already
provides support for the idea that as membrane
cholesterol levels increase, larger raft struc-
tures, with a smaller total perimeter, begin to
form. The model illustrated in Figure 3 illus-
trates that raising cholesterol levels beyond
some critical concentration may result in the
coalescence of smaller raft domains, analogous
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to the manner by which rafts might coalesce in
response to cross-linking of GPI-anchored pro-
teins. This may serve to sequester, and thereby
stimulate, “on” signals to oncogenic pathways,
as well as exclude negative regulators that
contribute “off” signals in the normal environ-
ment. This model is consistent with the reported
association between caveolin-1 expression and
PCa progression [Yang et al., 1998] in the sense
that higher caveolin levels may reflect an
expansion of the raft compartment in aggres-
sive tumor cells.

Importantly, the model illustrated in Figure 3
can be tested empirically. In unpublished stud-
ies from our group, Zhuang, Kim and colleagues
have demonstrated that raising serum choles-
terol in SCID mice harboring LNCaP PCa
xenograft tumors results in an increase in
cholesterol in lipid raft membranes. Impor-
tantly, this increase in raft cholesterol content
was shown to correlate with alterations in
several indices of oncogenic signal transduc-
tion, including an increase in the levels of raft
proteins phosphorylated on tyrosine, an incre-
ase in phosphorylated Akt, and a decrease in
apoptotic rates as evaluated by TUNEL.

CONCLUDING REMARKS

Cholesterol accumulation in PCa cells, in
concert with alterations in cholesterol metabo-
lism associated with age and malignancy in the
prostate, is likely to alter signal transduction
mechanisms underlying PCa progression in
profound ways. We have proposed that one pos-
sible consequence of progressive increases in
membrane cholesterol is the expansion of the
tumor cell lipid raft compartment, a change in
the plasma membrane that may potentiate
oncogenic pathways of cell signaling. The ability
to isolate lipid rafts from cells and tumors using
established biochemical methods allows for raft
proteins that respond to specific signals, such as
soluble factors that promote cancer cell growth
and survival, to be identified and characterized.
Large-scale cataloging of lipid raft proteins
using mass spectrometry is now ongoing by a
number of groups [Bini et al., 2003; Foster et al.,
2003]. This will allow the direct testing of the
hypothesis diagrammed in Figure 3, as well as
the identification of signaling proteins that may
associate with rafts stably or transiently during
the multiple processes illustrated in Figure 2.
The identification of these raft-associated
proteins, in combination with experiments

designed to understand the functional implica-
tions of their association with cholesterol-rich
membrane domains, will provide new insight
into signal transduction processes related to
cancer spread. We believe they will also provide
a wealth of new targets for cancer therapy and
possibly new biomarkers that will be useful in a
clinical setting.
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